.NET Architecture at Scale: Visual Guide to Modern Design Patterns
A comprehensive visual guide exploring 16 essential architectural patterns for .Net applications, featuring workflow diagrams, decision trees, and implementation examples.
.NET Architecture at Scale: Visual Guide to Modern Design Patterns
⚡ Performance Note: This article contains 16 comprehensive patterns with visual diagrams. For faster loading, consider bookmarking specific sections or using the “Find in Page” (Ctrl+F) feature to jump to relevant patterns.
The landscape of .NET architecture has evolved dramatically with .Net and Azure’s latest services, creating unprecedented opportunities for building scalable, resilient applications. Modern enterprises face complex challenges: distributed systems that must handle millions of transactions, microservices that need seamless communication, and legacy systems requiring careful modernization.
This comprehensive visual guide explores 16 essential architectural patterns through workflow diagrams, decision trees, and interaction flows that help architects make informed decisions about system design using the latest .NET ecosystem.
Table of Contents
- Foundational Architecture Patterns
- Advanced Communication Patterns
- Service Integration Patterns
- Resilience and Data Patterns
- Modern .NET and Azure Integration
- Deployment and Infrastructure Patterns
- Comprehensive Pattern Selection Guide
- Best Practices for Implementation
Comprehensive Pattern Selection Guide
This section provides both interactive decision flows and detailed comparison matrices to help you choose optimal architectural patterns for your .NET applications.
Interactive Decision Flow
Start your architectural journey with this decision tree to identify the most suitable patterns for your specific requirements:
flowchart TD
Start([Architecture Design Decision]) --> A{Application Type?}
A -->|Simple CRUD| B[Layered Architecture]
A -->|Complex Business Logic| C{Domain Complexity?}
A -->|Microservices| D{Communication Style?}
A -->|Legacy Modernization| E[Strangler Fig Pattern]
A -->|Event-Driven/Stateless| F1[Serverless Pattern]
C -->|High| F[Onion Architecture]
C -->|Medium| G[Hexagonal Architecture]
D -->|Synchronous| H{Load Distribution?}
D -->|Asynchronous| I[Event-Driven Architecture]
H -->|High| J[API Gateway + BFF]
H -->|Medium| K[API Gateway]
I --> L{Transaction Consistency?}
L -->|Required| M[Saga Pattern]
L -->|Eventual| N[CQRS + Event Sourcing]
L -->|Message Reliability| O1[Outbox Pattern]
B --> O{Scaling Needs?}
F --> P{Read/Write Patterns?}
G --> P
O -->|High| Q[Add Resilience Patterns]
P -->|Different| R[CQRS]
P -->|Same| S[Repository Pattern]
Q --> T[Circuit Breaker + Bulkhead]
%% Infrastructure Patterns
J --> U{Service Management?}
K --> U
U -->|Cross-cutting| V[Sidecar Pattern]
U -->|External Communication| W[Ambassador Pattern]
style Start fill:#ffeb3b
style B fill:#c8e6c9
style F fill:#ffcdd2
style G fill:#f8bbd9
style I fill:#e1bee7
style J fill:#b3e5fc
style F1 fill:#e8f5e8
style O1 fill:#fff3e0
style V fill:#f3e5f5
style W fill:#e3f2fd
Complexity vs. Benefit Analysis
graph LR
subgraph "Low Complexity"
L1[Layered Architecture<br/>⭐⭐⭐⭐⭐]
L2[API Gateway<br/>⭐⭐⭐⭐]
L3[Circuit Breaker<br/>⭐⭐⭐⭐]
end
subgraph "Medium Complexity"
M1[Hexagonal Architecture<br/>⭐⭐⭐]
M2[CQRS<br/>⭐⭐⭐]
M3[BFF<br/>⭐⭐⭐]
M4[Serverless<br/>⭐⭐⭐]
end
subgraph "High Complexity"
H1[Onion Architecture<br/>⭐⭐]
H2[Event Sourcing<br/>⭐⭐]
H3[Saga Pattern<br/>⭐⭐]
H4[Strangler Fig<br/>⭐⭐]
end
style L1 fill:#c8e6c9
style L2 fill:#c8e6c9
style L3 fill:#c8e6c9
style M1 fill:#fff3e0
style M2 fill:#fff3e0
style M3 fill:#fff3e0
style M4 fill:#fff3e0
style H1 fill:#ffcdd2
style H2 fill:#ffcdd2
style H3 fill:#ffcdd2
style H4 fill:#ffcdd2
Comprehensive Pattern Comparison Matrix
Pattern | Team Skill Level | Setup Time | Maintenance | Scalability | Testability | Use Case Fit |
---|---|---|---|---|---|---|
Layered | Beginner | Fast | Low | Medium | Medium | CRUD Apps |
Hexagonal | Intermediate | Medium | Medium | High | Very High | Clean Architecture |
Onion | Advanced | Slow | High | Very High | Very High | Enterprise DDD |
CQRS | Intermediate | Medium | Medium | Very High | High | Read/Write Split |
Event-Driven | Advanced | Slow | High | Very High | Medium | Real-time Systems |
Saga | Expert | Very Slow | Very High | High | Medium | Distributed Transactions |
API Gateway | Beginner | Fast | Low | Very High | Medium | Microservices |
BFF | Intermediate | Medium | Medium | High | High | Multi-client Apps |
Serverless | Intermediate | Fast | Low | Auto | Medium | Event Processing |
Strangler Fig | Advanced | Variable | High | High | Medium | Legacy Migration |
Circuit Breaker | Beginner | Fast | Low | Medium | High | Fault Tolerance |
Outbox | Intermediate | Medium | Medium | High | Medium | Message Reliability |
Sidecar | Intermediate | Medium | Medium | High | Medium | Cross-cutting Concerns |
Ambassador | Advanced | Medium | High | High | Medium | Service Proxy |
Bulkhead | Advanced | Slow | High | Very High | Medium | Resource Isolation |
Event Sourcing | Expert | Very Slow | Very High | High | Medium | Audit Trail |
Quick Selection Guide
flowchart TD
A[What's your primary need?] --> B[Simple CRUD Application]
A --> C[High Performance & Scale]
A --> D[Clean Testable Code]
A --> E[Legacy Modernization]
A --> F[Multi-client Support]
A --> G[Fault Tolerance]
B --> B1[✅ Layered Architecture]
C --> C1[✅ CQRS + Event-Driven]
D --> D1[✅ Hexagonal/Onion]
E --> E1[✅ Strangler Fig]
F --> F1[✅ API Gateway + BFF]
G --> G1[✅ Circuit Breaker + Bulkhead]
style B1 fill:#c8e6c9
style C1 fill:#ffeb3b
style D1 fill:#e3f2fd
style E1 fill:#fff3e0
style F1 fill:#f3e5f5
style G1 fill:#ffcdd2
Architectural Pattern Categories
Understanding pattern relationships helps in making informed architectural decisions:
mindmap
root((Design Patterns))
Foundational
Layered
Hexagonal
Onion
Communication
CQRS
Event-Driven
Saga
Integration
API Gateway
BFF
Serverless
Strangler Fig
Resilience
Circuit Breaker
Bulkhead
Outbox
Infrastructure
Sidecar
Ambassador
Data
Event Sourcing
Foundational Architecture Patterns
Layered Architecture
Layered Architecture remains the most familiar pattern for .NET developers, organizing applications into horizontal layers with clear separation of concerns. While simpler than modern alternatives, it provides an excellent foundation for understanding architectural principles.
Architecture Flow
graph TB
A[Presentation Layer<br/>Controllers, Views, APIs] --> B[Business Logic Layer<br/>Services, Domain Logic]
B --> C[Data Access Layer<br/>Repositories, ORM, DAL]
C --> D[Database Layer<br/>SQL Server, Entity Framework]
style A fill:#e1f5fe
style B fill:#f3e5f5
style C fill:#e8f5e8
style D fill:#fff3e0
Request Processing Flow
sequenceDiagram
participant C as Client
participant P as Presentation Layer
participant B as Business Layer
participant D as Data Layer
participant DB as Database
C->>P: HTTP Request
P->>P: Validate Input
P->>B: Call Business Logic
B->>B: Apply Business Rules
B->>D: Repository Call
D->>DB: SQL Query
DB-->>D: Data
D-->>B: Domain Objects
B-->>P: Processing Result
P-->>C: HTTP Response
When to Use Decision Tree
flowchart TD
A[Consider Layered Architecture] --> B{Team Experience?}
B -->|Junior/Mixed| C{Project Complexity?}
B -->|Senior| D[Consider Advanced Patterns]
C -->|Low-Medium| E[✅ Use Layered]
C -->|High| F[Consider Hexagonal/Onion]
E --> G{Future Scalability?}
G -->|Limited| H[✅ Layered is Perfect]
G -->|High| I[Plan Migration Path]
style E fill:#c8e6c9
style H fill:#c8e6c9
style F fill:#ffcdd2
style D fill:#ffcdd2
Best for: CRUD applications, rapid prototyping, small teams, learning projects.
Benefits: Familiarity, simplicity, quick development cycles.
Challenges: Tight coupling between layers, difficulty in testing, scalability limitations.
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// Business Logic Layer - Service
public class ProductService : IProductService
{
private readonly IProductRepository _productRepository;
public ProductService(IProductRepository productRepository)
{
_productRepository = productRepository;
}
public async Task<IEnumerable<Product>> GetAllProductsAsync()
{
return await _productRepository.GetAllAsync();
}
public async Task<Product> CreateProductAsync(CreateProductRequest request)
{
var product = new Product
{
Name = request.Name,
Price = request.Price,
CreatedAt = DateTime.UtcNow
};
return await _productRepository.CreateAsync(product);
}
}
// Data Access Layer - Repository
public class ProductRepository : IProductRepository
{
private readonly AppDbContext _context;
public ProductRepository(AppDbContext context)
{
_context = context;
}
public async Task<IEnumerable<Product>> GetAllAsync()
{
return await _context.Products.ToListAsync();
}
public async Task<Product> CreateAsync(Product product)
{
_context.Products.Add(product);
await _context.SaveChangesAsync();
return product;
}
}
When to use: Simple to medium-complexity applications, traditional enterprise systems, rapid prototyping, or when working with junior developers.
Advantages include: Simplicity, familiarity, and quick development cycles.
Disadvantages include: Tight coupling, testing challenges, and database-centric design that can hinder flexibility.
Hexagonal Architecture
Hexagonal Architecture, also known as Ports and Adapters, isolates core business logic from external concerns through well-defined interfaces. This pattern excels when technology independence and testability are paramount.
Architecture Structure
graph TB
subgraph "Primary Adapters"
A1[Web API]
A2[UI]
A3[Console]
end
subgraph "Ports"
P1[Inbound Interfaces]
end
subgraph "Application Core"
AC[Domain<br/>Business Logic]
end
subgraph "Ports"
P2[Outbound Interfaces]
end
subgraph "Secondary Adapters"
S1[Database]
S2[Email Service]
S3[External APIs]
end
A1 --> P1
A2 --> P1
A3 --> P1
P1 --> AC
AC --> P2
P2 --> S1
P2 --> S2
P2 --> S3
style AC fill:#ffeb3b
style P1 fill:#e3f2fd
style P2 fill:#e3f2fd
Dependency Flow
flowchart LR
subgraph "Outside World"
UI[User Interface]
API[API Clients]
DB[(Database)]
EXT[External Services]
end
subgraph "Adapters"
PA[Primary Adapters]
SA[Secondary Adapters]
end
subgraph "Ports"
IP[Input Ports]
OP[Output Ports]
end
subgraph "Core"
BL[Business Logic]
end
UI --> PA
API --> PA
PA --> IP
IP --> BL
BL --> OP
OP --> SA
SA --> DB
SA --> EXT
style BL fill:#ffeb3b
style IP fill:#c8e6c9
style OP fill:#c8e6c9
Testing Strategy
graph TD
A[Testing Strategy] --> B[Unit Tests]
A --> C[Integration Tests]
A --> D[Acceptance Tests]
B --> B1[Domain Logic<br/>✓ Fast ✓ Isolated]
B --> B2[Use Cases<br/>✓ Mock Adapters]
C --> C1[Adapter Tests<br/>✓ Real Infrastructure]
C --> C2[Port Tests<br/>✓ Contract Validation]
D --> D1[End-to-End<br/>✓ Full System]
style B1 fill:#c8e6c9
style B2 fill:#c8e6c9
style C1 fill:#fff3e0
style C2 fill:#fff3e0
style D1 fill:#ffcdd2
Implementation Guidelines
1
2
3
4
5
6
7
8
9
10
11
// Core Contracts - Keep Minimal
public interface IProductRepository
{
Task<Product> GetByIdAsync(int id);
Task<Product> SaveAsync(Product product);
}
public interface IProductService
{
Task<ProductDto> CreateProductAsync(CreateProductRequest request);
}
Best for: Applications requiring high testability, technology independence, or complex business logic.
Benefits: Technology agnostic, highly testable, clean dependencies.
Challenges: Initial complexity, learning curve, potential over-engineering for simple applications.
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// Port - Interface defined by business needs
public interface IProductRepository
{
Task<Product> GetByIdAsync(int id);
Task<IEnumerable<Product>> GetAllAsync();
Task<Product> SaveAsync(Product product);
}
// Application Service - Orchestrates business logic
public class ProductService
{
private readonly IProductRepository _productRepository;
private readonly INotificationService _notificationService;
public ProductService(IProductRepository productRepository,
INotificationService notificationService)
{
_productRepository = productRepository;
_notificationService = notificationService;
}
public async Task<Product> CreateProductAsync(string name, decimal price)
{
var product = new Product(name, price);
var savedProduct = await _productRepository.SaveAsync(product);
await _notificationService.SendProductCreatedNotificationAsync(savedProduct);
return savedProduct;
}
}
When to use: Complex business logic applications, systems requiring high testability, applications with multiple interfaces, or systems with frequently changing external dependencies.
Advantages include: Technology independence, high testability, and maintainability.
Disadvantages include: Increased complexity and potential over-engineering for simple applications.
Onion Architecture
Onion Architecture builds upon Hexagonal principles with explicit concentric layers, placing domain logic at the center and ensuring dependencies flow inward. This pattern excels for enterprise applications with complex business rules.
Concentric Layer Structure
graph TB
subgraph "Infrastructure Layer"
I1[Data Access]
I2[External Services]
I3[File System]
end
subgraph "Presentation Layer"
P1[Web API]
P2[MVC]
P3[Blazor]
end
subgraph "Application Layer"
A1[Application Services]
A2[Use Cases]
A3[DTOs]
end
subgraph "Domain Layer"
D1[Entities]
D2[Domain Services]
D3[Domain Events]
end
P1 -.-> A1
P2 -.-> A1
P3 -.-> A1
A1 --> D1
A2 --> D1
I1 -.-> A1
I2 -.-> A1
I3 -.-> A1
style D1 fill:#ffeb3b
style D2 fill:#ffeb3b
style D3 fill:#ffeb3b
style A1 fill:#e3f2fd
style A2 fill:#e3f2fd
style A3 fill:#e3f2fd
Dependency Flow Rules
flowchart TD
A[Onion Architecture Rules] --> B[Domain Layer]
A --> C[Application Layer]
A --> D[Infrastructure Layer]
A --> E[Presentation Layer]
B --> B1[✓ No Dependencies<br/>✓ Pure Business Logic<br/>✓ Domain Events]
C --> C1[✓ Depends on Domain Only<br/>✓ Use Cases & Services<br/>✓ Interface Definitions]
D --> D1[✓ Implements Interfaces<br/>✓ External Concerns<br/>✓ Data Access & APIs]
E --> E1[✓ Depends on Application<br/>✓ User Interface<br/>✓ Controllers & Views]
style B1 fill:#ffeb3b
style C1 fill:#e3f2fd
style D1 fill:#f3e5f5
style E1 fill:#e8f5e8
Use Case Flow
sequenceDiagram
participant UI as Presentation
participant App as Application
participant Dom as Domain
participant Inf as Infrastructure
UI->>App: Execute Use Case
App->>Dom: Business Logic Call
Dom->>Dom: Apply Business Rules
Dom->>App: Domain Events
App->>Inf: Persist Changes
Inf-->>App: Confirmation
App-->>UI: Response DTO
Note over Dom: Core business logic<br/>remains isolated
Project Structure Guidelines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Property.Management.Domain/
├── Entities/
├── ValueObjects/
├── DomainServices/
└── Events/
Property.Management.Application/
├── UseCases/
├── Services/
├── DTOs/
└── Interfaces/
Property.Management.Infrastructure/
├── Persistence/
├── ExternalServices/
└── Configuration/
Property.Management.Presentation/
├── Controllers/
├── Models/
└── Views/
Best for: Enterprise applications with complex business rules, Domain-Driven Design implementations, long-term maintainable systems.
Benefits: Clear separation of concerns, testable architecture, business logic isolation.
Challenges: Initial setup complexity, learning curve for teams new to DDD.
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// Domain Layer - Rich domain model
public class Order
{
private readonly List<OrderItem> _items = new();
public int Id { get; private set; }
public string CustomerName { get; private set; }
public DateTime OrderDate { get; private set; }
public OrderStatus Status { get; private set; }
public decimal TotalAmount => _items.Sum(i => i.Price * i.Quantity);
public Order(string customerName)
{
OrderDate = DateTime.UtcNow;
Status = OrderStatus.Draft;
}
public void AddItem(string productName, decimal price, int quantity)
{
if (Status != OrderStatus.Draft)
throw new InvalidOperationException("Cannot modify confirmed order");
_items.Add(new OrderItem(productName, price, quantity));
}
public void ConfirmOrder()
{
if (!_items.Any())
throw new InvalidOperationException("Cannot confirm empty order");
if (Status != OrderStatus.Draft)
throw new InvalidOperationException("Order already confirmed");
Status = OrderStatus.Confirmed;
}
}
// Application Layer - Use cases
public class OrderService : IOrderService
{
private readonly IOrderRepository _orderRepository;
private readonly IEmailService _emailService;
public OrderService(IOrderRepository orderRepository, IEmailService emailService)
{
_orderRepository = orderRepository;
_emailService = emailService;
}
public async Task<OrderDto> CreateOrderAsync(CreateOrderRequest request)
{
var order = new Order(request.CustomerName);
var savedOrder = await _orderRepository.SaveAsync(order);
return new OrderDto
{
Id = savedOrder.Id,
CustomerName = savedOrder.CustomerName,
OrderDate = savedOrder.OrderDate,
Status = savedOrder.Status.ToString(),
TotalAmount = savedOrder.TotalAmount
};
}
public async Task<OrderDto> ConfirmOrderAsync(int orderId)
{
var order = await _orderRepository.GetByIdAsync(orderId);
if (order == null)
throw new ArgumentException("Order not found");
order.ConfirmOrder();
var confirmedOrder = await _orderRepository.SaveAsync(order);
await _emailService.SendOrderConfirmationAsync(confirmedOrder);
return MapToDto(confirmedOrder);
}
}
When to use: Enterprise applications with complex business rules, Domain-Driven Design implementations, or long-term software projects requiring high maintainability.
Advantages include: Domain-centric design, high testability, and clear structure.
Disadvantages include: Complexity and potential over-engineering for simple applications.
Advanced Communication Patterns
CQRS (Command Query Responsibility Segregation)
Command Query Responsibility Segregation (CQRS) separates read and write operations, allowing independent optimization of each concern. This pattern enables different models for reading and writing data.
Architecture Overview
graph LR
subgraph "Command Side"
C1[Commands] --> CH[Command Handlers]
CH --> WDB[(Write Database)]
end
subgraph "Query Side"
Q1[Queries] --> QH[Query Handlers]
QH --> RDB[(Read Database)]
end
subgraph "Event Bus"
EB[Domain Events]
end
CH --> EB
EB --> RS[Read Store Updater]
RS --> RDB
style C1 fill:#ffcdd2
style Q1 fill:#c8e6c9
style EB fill:#fff3e0
Decision Flow for CQRS
flowchart TD
A[Consider CQRS] --> B{Read/Write Patterns Different?}
B -->|No| C[Use Simple Repository]
B -->|Yes| D{Scalability Requirements?}
D -->|Low| E[Simple CQRS<br/>Same Database]
D -->|High| F{Consistency Requirements?}
F -->|Eventual OK| G[CQRS + Event Sourcing]
F -->|Strong Required| H[CQRS + Saga Pattern]
E --> I[MediatR Implementation]
G --> J[Separate Read/Write Stores]
H --> K[Distributed Transactions]
style C fill:#ffcdd2
style I fill:#c8e6c9
style J fill:#c8e6c9
style K fill:#fff3e0
Message Flow Patterns
sequenceDiagram
participant C as Client
participant API as API Gateway
participant CH as Command Handler
participant WS as Write Store
participant EB as Event Bus
participant QH as Query Handler
participant RS as Read Store
Note over C,RS: Command Flow
C->>API: Create Order Command
API->>CH: Process Command
CH->>WS: Store Write Model
CH->>EB: Publish Domain Event
EB->>QH: Update Read Model
QH->>RS: Store Read Model
Note over C,RS: Query Flow
C->>API: Get Order Query
API->>QH: Process Query
QH->>RS: Retrieve Read Model
RS-->>QH: Read Model Data
QH-->>API: Query Result
API-->>C: Response
Implementation Strategy
graph TD
A[CQRS Implementation] --> B[Phase 1: Separate Handlers]
A --> C[Phase 2: Separate Models]
A --> D[Phase 3: Separate Stores]
B --> B1[✓ MediatR Setup<br/>✓ Command/Query Handlers<br/>✓ Same Database]
C --> C1[✓ Write Models<br/>✓ Read Models<br/>✓ Event Publishing]
D --> D1[✓ Write Database<br/>✓ Read Database<br/>✓ Event Sourcing]
style B1 fill:#c8e6c9
style C1 fill:#fff3e0
style D1 fill:#ffcdd2
Core Contracts
1
2
3
4
5
6
7
8
9
// Keep contracts minimal and focused
public interface ICommand<TResult> : IRequest<TResult> { }
public interface IQuery<TResult> : IRequest<TResult> { }
// Example command
public record CreateOrderCommand(string CustomerId, List<OrderItem> Items) : ICommand<int>;
// Example query
public record GetOrderQuery(int OrderId) : IQuery<OrderDto>;
Best for: Applications with different read/write patterns, high-scale systems, complex reporting requirements.
Benefits: Independent scaling, optimized data models, clear separation.
Challenges: Increased complexity, eventual consistency, debugging across models.
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// Controllers using MediatR
[ApiController]
[Route("api/[controller]")]
public class ProductsController : ControllerBase
{
private readonly IMediator _mediator;
public ProductsController(IMediator mediator)
{
_mediator = mediator;
}
[HttpPost]
public async Task<IActionResult> CreateProduct([FromBody] CreateProductCommand command)
{
var productId = await _mediator.Send(command);
return CreatedAtAction(nameof(GetProduct), new { id = productId }, productId);
}
[HttpGet("{id}")]
public async Task<IActionResult> GetProduct(int id)
{
var product = await _mediator.Send(new GetProductByIdQuery(id));
return Ok(product);
}
}
CQRS Benefits: Independent scaling of read and write operations, optimized data models for specific use cases, and reduced contention.
Challenges include: Increased complexity, eventual consistency, and additional infrastructure requirements.
Event-Driven Architecture
Event-Driven Architecture enables loose coupling between components through asynchronous message passing, allowing systems to scale independently and react to business events in real-time.
Event Flow Architecture
graph TB
subgraph "Event Producers"
EP1[Order Service]
EP2[Payment Service]
EP3[Inventory Service]
end
subgraph "Event Infrastructure"
EB[Event Bus<br/>Azure Service Bus / RabbitMQ]
end
subgraph "Event Consumers"
EC1[Email Service]
EC2[Analytics Service]
EC3[Audit Service]
end
EP1 --> EB
EP2 --> EB
EP3 --> EB
EB --> EC1
EB --> EC2
EB --> EC3
style EB fill:#ffeb3b
style EP1 fill:#ffcdd2
style EP2 fill:#ffcdd2
style EP3 fill:#ffcdd2
style EC1 fill:#c8e6c9
style EC2 fill:#c8e6c9
style EC3 fill:#c8e6c9
Event Processing Patterns
flowchart TD
A[Event Processing Strategy] --> B[Choreography]
A --> C[Orchestration]
B --> B1[✓ Distributed Logic<br/>✓ Services React to Events<br/>✓ No Central Coordinator]
C --> C1[✓ Central Coordinator<br/>✓ Workflow Management<br/>✓ Explicit Process Control]
B1 --> B2[Pro: Loose Coupling<br/>Con: Hard to Debug]
C1 --> C2[Pro: Clear Flow<br/>Con: Central Point of Failure]
style B1 fill:#c8e6c9
style C1 fill:#fff3e0
Event Consistency Patterns
stateDiagram-v2
[*] --> EventPublished
EventPublished --> Processing
Processing --> Success: All Handlers Complete
Processing --> PartialFailure: Some Handlers Fail
Processing --> TotalFailure: Critical Handler Fails
PartialFailure --> Retry: Retry Failed Handlers
TotalFailure --> Compensate: Execute Compensation
Retry --> Success: Retry Successful
Retry --> Dead Letter: Max Retries Exceeded
Success --> [*]
Compensate --> [*]
Dead Letter --> [*]
Implementation Approach
1
2
3
4
5
6
7
8
9
10
11
12
// Minimal event contract
public record OrderCreatedEvent(
int OrderId,
string CustomerId,
decimal Amount,
DateTime CreatedAt);
// Event handler interface
public interface IEventHandler<in TEvent>
{
Task HandleAsync(TEvent eventData);
}
Best for: Microservices communication, real-time systems, scalable architectures.
Benefits: Loose coupling, scalability, resilience.
Challenges: Debugging complexity, eventual consistency, monitoring requirements.
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// Command Handler using MediatR
public class CreateOrderCommandHandler : IRequestHandler<CreateOrderCommand, int>
{
private readonly IOrderRepository _orderRepository;
private readonly IMediator _mediator;
public async Task<int> Handle(CreateOrderCommand request, CancellationToken cancellationToken)
{
var order = new Order(request.CustomerId, request.Items);
await _orderRepository.SaveAsync(order);
// Publish domain event
await _mediator.Publish(new OrderCreatedEvent
{
OrderId = order.Id,
CustomerId = request.CustomerId,
Items = request.Items,
TotalAmount = order.TotalAmount
}, cancellationToken);
return order.Id;
}
}
}
}
// Event Handlers
public class InventoryEventHandler : INotificationHandler<OrderCreatedEvent>
{
private readonly IInventoryService _inventoryService;
public async Task Handle(OrderCreatedEvent notification, CancellationToken cancellationToken)
{
foreach (var item in notification.Items)
{
await _inventoryService.ReserveInventoryAsync(item.ProductId, item.Quantity);
}
}
}
public class EmailNotificationHandler : INotificationHandler<OrderCreatedEvent>
{
private readonly IEmailService _emailService;
public async Task Handle(OrderCreatedEvent notification, CancellationToken cancellationToken)
{
await _emailService.SendOrderConfirmationAsync(
notification.CustomerId,
notification.OrderId);
}
}
When to use: E-commerce platforms with order processing workflows, IoT applications processing sensor data, real-time analytics systems, or microservices communication.
Advantages include: Loose coupling, fault tolerance, and horizontal scalability.
Disadvantages include: Debugging complexity, message ordering, and monitoring requirements.
Saga Pattern
The Saga Pattern manages distributed transactions across multiple microservices by coordinating a sequence of local transactions with compensating actions for rollback scenarios.
stateDiagram-v2
[*] --> Started
Started --> PaymentProcessed: Process Payment
PaymentProcessed --> InventoryReserved: Reserve Inventory
InventoryReserved --> OrderConfirmed: Confirm Order
OrderConfirmed --> [*]
PaymentProcessed --> Compensating: Payment Failed
InventoryReserved --> Compensating: Inventory Failed
Compensating --> Failed: Rollback Complete
Failed --> [*]
Compensating: Execute compensating transactions in reverse order
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
// Saga State Machine
public class OrderProcessingSaga
{
public string OrderId { get; set; }
public string CustomerId { get; set; }
public decimal Amount { get; set; }
public SagaState State { get; set; }
public List<string> CompletedSteps { get; set; } = new();
public enum SagaState
{
Started,
PaymentProcessed,
InventoryReserved,
OrderConfirmed,
Failed,
Compensating
}
}
// Saga Orchestrator
public class OrderSagaOrchestrator
{
private readonly IMediator _mediator;
private readonly ISagaRepository _sagaRepository;
public async Task HandleOrderCreatedAsync(OrderCreatedEvent orderCreated)
{
var saga = new OrderProcessingSaga
{
OrderId = orderCreated.OrderId.ToString(),
CustomerId = orderCreated.CustomerId,
Amount = orderCreated.TotalAmount,
State = OrderProcessingSaga.SagaState.Started
};
await _sagaRepository.SaveAsync(saga);
// Start the saga by processing payment
await _mediator.Send(new ProcessPaymentCommand(
saga.OrderId,
saga.CustomerId,
saga.Amount));
}
public async Task HandlePaymentProcessedAsync(PaymentProcessedEvent paymentProcessed)
{
var saga = await _sagaRepository.GetByOrderIdAsync(paymentProcessed.OrderId);
saga.State = OrderProcessingSaga.SagaState.PaymentProcessed;
saga.CompletedSteps.Add("Payment");
await _sagaRepository.UpdateAsync(saga);
// Next step: Reserve inventory
await _mediator.Send(new ReserveInventoryCommand(
saga.OrderId,
paymentProcessed.Items));
}
public async Task HandleStepFailedAsync(SagaStepFailedEvent stepFailed)
{
var saga = await _sagaRepository.GetByOrderIdAsync(stepFailed.OrderId);
saga.State = OrderProcessingSaga.SagaState.Compensating;
await _sagaRepository.UpdateAsync(saga);
// Execute compensating transactions in reverse order
await ExecuteCompensatingTransactionsAsync(saga);
}
private async Task ExecuteCompensatingTransactionsAsync(OrderProcessingSaga saga)
{
var completedSteps = saga.CompletedSteps.AsEnumerable().Reverse();
foreach (var step in completedSteps)
{
switch (step)
{
case "Inventory":
await _mediator.Send(new ReleaseInventoryCommand(saga.OrderId));
break;
case "Payment":
await _mediator.Send(new RefundPaymentCommand(saga.OrderId, saga.Amount));
break;
}
}
saga.State = OrderProcessingSaga.SagaState.Failed;
await _sagaRepository.UpdateAsync(saga);
}
}
Saga Pattern Benefits: Data consistency without distributed transactions, better error handling, and improved system resilience.
Challenges include: Increased complexity, debugging difficulties, and compensation logic complexity.
Service Integration Patterns
API Gateway
The API Gateway Pattern provides a single entry point for clients to access multiple backend services, commonly implemented using Azure API Management or Azure Application Gateway.
graph TB
C1[Mobile Client] --> GW[API Gateway]
C2[Web Client] --> GW
C3[Third Party] --> GW
GW --> S1[Auth Service]
GW --> S2[Product Service]
GW --> S3[Order Service]
GW --> S4[Payment Service]
subgraph "Cross-cutting Concerns"
CC1[Rate Limiting]
CC2[Authentication]
CC3[Caching]
CC4[Monitoring]
end
GW -.-> CC1
GW -.-> CC2
GW -.-> CC3
GW -.-> CC4
style GW fill:#ffeb3b
style C1 fill:#e3f2fd
style C2 fill:#e3f2fd
style C3 fill:#e3f2fd
Azure API Management Configuration
1
2
3
4
5
6
7
8
9
10
11
// Rate limiting policy
@{
return context.Request.IpAddress == "192.168.1.1" ? 1000 : 100;
}
// Route based on User-Agent
@{
return context.Request.Headers.GetValueOrDefault("User-Agent", "").Contains("Mobile")
? "mobile-backend"
: "web-backend";
}
API Gateway Features: Layer 7 routing, authentication and authorization, rate limiting, request/response transformation, caching, and monitoring integration. Azure API Management offers different tiers including Consumption (serverless), Developer, Basic, Standard, and Premium, each with varying features and pricing models.
When to use: E-commerce platforms routing requests to catalog, inventory, and payment services; multi-tenant applications requiring tenant-based routing; or API versioning scenarios.
Advantages include: Reduced latency through caching, cost efficiency, and centralized infrastructure management.
Disadvantages include: Potential single point of failure and performance bottlenecks.
Backend for Frontend (BFF)
The Backend for Frontend (BFF) Pattern creates dedicated backend services for specific frontend applications or interfaces, optimizing each backend for particular client needs rather than using a single general-purpose API.
graph TB
subgraph "Clients"
M[Mobile App]
W[Web App]
T[Third Party API]
end
subgraph "BFF Layer"
MBFF[Mobile BFF]
WBFF[Web BFF]
TBFF[Partner API BFF]
end
subgraph "Backend Services"
PS[Product Service]
OS[Order Service]
US[User Service]
NS[Notification Service]
end
M --> MBFF
W --> WBFF
T --> TBFF
MBFF --> PS
MBFF --> OS
MBFF --> NS
WBFF --> PS
WBFF --> OS
WBFF --> US
TBFF --> PS
TBFF --> OS
style MBFF fill:#ffcdd2
style WBFF fill:#c8e6c9
style TBFF fill:#fff3e0
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// Mobile BFF Service
[ApiController]
[Route("api/mobile/[controller]")]
public class MobileProductController : ControllerBase
{
private readonly IProductService _productService;
private readonly IImageService _imageService;
[HttpGet("{id}")]
public async Task<MobileProductDto> GetProduct(int id)
{
var product = await _productService.GetByIdAsync(id);
// Mobile-specific optimization: smaller images, essential data only
return new MobileProductDto
{
Id = product.Id,
Name = product.Name,
Price = product.Price,
ThumbnailUrl = await _imageService.GetThumbnailAsync(product.ImageUrl, "mobile"),
Rating = product.AverageRating,
InStock = product.StockLevel > 0
};
}
}
// Web BFF Service
[ApiController]
[Route("api/web/[controller]")]
public class WebProductController : ControllerBase
{
private readonly IProductService _productService;
private readonly IReviewService _reviewService;
[HttpGet("{id}")]
public async Task<WebProductDto> GetProduct(int id)
{
var product = await _productService.GetByIdAsync(id);
var reviews = await _reviewService.GetRecentReviewsAsync(id, 10);
// Web-specific: full data with reviews, recommendations
return new WebProductDto
{
Id = product.Id,
Name = product.Name,
Description = product.Description,
Price = product.Price,
ImageUrls = product.ImageUrls,
Specifications = product.Specifications,
Reviews = reviews,
StockLevel = product.StockLevel,
EstimatedDelivery = CalculateDeliveryDate(product)
};
}
}
When to use: Multi-platform applications (web, mobile, IoT), different client requirements, or API versioning scenarios.
Advantages include: Optimized data transfer, client-specific optimizations, and independent evolution.
Disadvantages include: Code duplication, increased infrastructure complexity, and additional maintenance overhead.
Serverless Pattern
The Serverless Pattern enables event-driven, scalable applications using Azure Functions with .NET, supporting various hosting models and orchestration patterns.
graph TB
subgraph "Event Sources"
HTTP[HTTP Triggers]
TIMER[Timer Triggers]
QUEUE[Queue Triggers]
BLOB[Blob Triggers]
end
subgraph "Azure Functions"
F1[Order Processing]
F2[Image Resizing]
F3[Email Sending]
F4[Data Cleanup]
end
subgraph "Outputs"
DB[(Database)]
STORAGE[Blob Storage]
SB[Service Bus]
COSMOS[(Cosmos DB)]
end
HTTP --> F1
TIMER --> F4
QUEUE --> F2
BLOB --> F2
F1 --> DB
F1 --> SB
F2 --> STORAGE
F3 --> SB
F4 --> DB
F4 --> COSMOS
style F1 fill:#ffeb3b
style F2 fill:#ffeb3b
style F3 fill:#ffeb3b
style F4 fill:#ffeb3b
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// .NET Isolated Worker Model
[Function("ProcessOrder")]
public async Task<IActionResult> ProcessOrder(
[HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
[CosmosDBOutput("OrdersDB", "Orders", Connection = "CosmosDB")] IAsyncCollector<Order> orders)
{
var order = await req.ReadFromJsonAsync<Order>();
await orders.AddAsync(order);
return new OkObjectResult(new { OrderId = order.Id, Status = "Processing" });
}
// Durable Functions Orchestration
[Function("OrderProcessingOrchestrator")]
public async Task<string> RunOrchestrator(
[OrchestrationTrigger] IDurableOrchestrationContext context)
{
var order = context.GetInput<Order>();
// Function chaining pattern
await context.CallActivityAsync("ValidateOrder", order);
await context.CallActivityAsync("ProcessPayment", order);
await context.CallActivityAsync("UpdateInventory", order);
await context.CallActivityAsync("ShipOrder", order);
return "Order processed successfully";
}
Serverless Benefits: Automatic scaling, pay-per-execution pricing, and reduced operational overhead.
Challenges include: Cold starts, execution time limits, and vendor lock-in considerations.
Strangler Fig Pattern
The Strangler Fig Pattern enables incremental modernization of legacy systems by gradually replacing functionality while maintaining operational continuity.
graph TB
subgraph "Phase 1: Initial State"
C1[Client] --> LS1[Legacy System]
end
subgraph "Phase 2: Facade Introduction"
C2[Client] --> F[Facade/Router]
F --> LS2[Legacy System]
F -.-> MS1[Modern Service A]
end
subgraph "Phase 3: Gradual Migration"
C3[Client] --> F2[Facade/Router]
F2 --> LS3[Legacy System]
F2 --> MS2[Modern Service A]
F2 --> MS3[Modern Service B]
end
subgraph "Phase 4: Complete Migration"
C4[Client] --> MS4[Modern Service A]
C4 --> MS5[Modern Service B]
C4 --> MS6[Modern Service C]
end
style F fill:#ffeb3b
style F2 fill:#ffeb3b
style MS1 fill:#c8e6c9
style MS2 fill:#c8e6c9
style MS3 fill:#c8e6c9
style MS4 fill:#c8e6c9
style MS5 fill:#c8e6c9
style MS6 fill:#c8e6c9
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// Routing Facade Implementation
public class StranglerFacade : IHostedService
{
private readonly IServiceProvider _serviceProvider;
private readonly IConfiguration _configuration;
public async Task RouteRequest(HttpContext context)
{
var feature = DetermineFeature(context.Request.Path);
if (IsModernizedFeature(feature))
{
await RouteToModernService(context, feature);
}
else
{
await RouteToLegacySystem(context);
}
}
private bool IsModernizedFeature(string feature)
{
return _configuration.GetValue<bool>($"Features:{feature}:Modernized");
}
private async Task RouteToModernService(HttpContext context, string feature)
{
// Route to new microservice
var modernServiceUrl = _configuration[$"Services:{feature}:Url"];
// Implementation details...
}
private async Task RouteToLegacySystem(HttpContext context)
{
// Route to legacy system
var legacyUrl = _configuration["LegacySystem:BaseUrl"];
// Implementation details...
}
}
Strangler Fig Implementation phases: Establish facade, incremental migration, data migration, and legacy retirement.
Advantages include: Reduced risk, continuous operation, and flexible timeline.
Disadvantages include: Complexity of managing two systems and maintaining data consistency.
Resilience and Data Patterns
Circuit Breaker Pattern: Fault Tolerance
The Circuit Breaker Pattern prevents cascading failures by monitoring service health and failing fast when dependencies are unhealthy, like an electrical circuit breaker.
Circuit Breaker State Flow
stateDiagram-v2
[*] --> Closed
Closed --> Open: Failure Threshold Exceeded
Open --> HalfOpen: Timeout Expires
HalfOpen --> Closed: Test Request Succeeds
HalfOpen --> Open: Test Request Fails
Closed: Normal Operation<br/>Requests Pass Through<br/>Monitor Failures
Open: Circuit Tripped<br/>Fail Fast<br/>No Requests Allowed
HalfOpen: Testing Recovery<br/>Limited Test Requests<br/>Evaluate Health
note right of Closed
Success Rate > Threshold
Reset Failure Counter
end note
note right of Open
Immediate Rejection
Resource Protection
Wait for Recovery
end note
note right of HalfOpen
Single Test Request
Quick Failure Detection
Gradual Recovery
end note
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// Modern .Net Implementation
services.AddHttpClient<PaymentService>()
.AddStandardResilienceHandler(options =>
{
options.CircuitBreaker.FailureRatio = 0.5;
options.CircuitBreaker.SamplingDuration = TimeSpan.FromSeconds(10);
options.CircuitBreaker.MinimumThroughput = 8;
options.CircuitBreaker.BreakDuration = TimeSpan.FromSeconds(30);
});
// Custom Circuit Breaker with Polly v8
var circuitBreakerOptions = new CircuitBreakerStrategyOptions
{
FailureRatio = 0.5,
SamplingDuration = TimeSpan.FromSeconds(10),
MinimumThroughput = 8,
BreakDuration = TimeSpan.FromSeconds(30),
ShouldHandle = new PredicateBuilder()
.Handle<HttpRequestException>()
.Handle<TimeoutRejectedException>()
.HandleResult<HttpResponseMessage>(r => !r.IsSuccessStatusCode)
};
var resiliencePipeline = new ResiliencePipelineBuilder()
.AddCircuitBreaker(circuitBreakerOptions)
.Build();
Circuit Breaker States: Closed (normal operation), Open (circuit tripped), and Half-Open (testing recovery).
Advantages include: Preventing cascading failures, resource conservation, and improved user experience.
Disadvantages include: Configuration complexity and potential false positives.
Outbox Pattern: Reliable Message Delivery
The Outbox Pattern ensures reliable message delivery by storing outbound messages in the same database transaction as business data, then publishing them asynchronously.
Outbox Pattern Flow
sequenceDiagram
participant App as Application
participant DB as Database
participant OT as Outbox Table
participant BP as Background Processor
participant MB as Message Bus
participant CS as Consuming Services
Note over App,CS: Business Transaction with Reliable Messaging
App->>DB: Begin Transaction
App->>DB: Save Business Data
App->>OT: Store Outbox Event
App->>DB: Commit Transaction
Note over BP: Polling Process (every 5s)
BP->>OT: Query Unprocessed Events
OT-->>BP: Pending Events
loop For Each Event
BP->>MB: Publish Event
MB-->>BP: Acknowledge
BP->>OT: Mark as Processed
end
MB->>CS: Deliver Event
CS-->>MB: Acknowledge
Note over App,CS: Guaranteed Delivery:<br/>At-least-once semantics
Outbox Table Structure
erDiagram
OUTBOX_EVENTS {
guid Id PK
string Type
string Data
datetime CreatedAt
boolean IsProcessed
datetime ProcessedAt
int RetryCount
string LastError
}
BUSINESS_DATA {
int Id PK
string Content
datetime CreatedAt
}
OUTBOX_EVENTS ||--o{ BUSINESS_DATA : references
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Outbox Event Entity
public class OutboxEvent
{
public Guid Id { get; set; }
public string Type { get; set; }
public string Data { get; set; }
public DateTime CreatedAt { get; set; }
public bool IsProcessed { get; set; }
public DateTime? ProcessedAt { get; set; }
}
// Service Implementation
public class OrderService
{
private readonly ApplicationDbContext _context;
public async Task CreateOrderAsync(Order order)
{
using var transaction = await _context.Database.BeginTransactionAsync();
try
{
// Save business data
_context.Orders.Add(order);
// Save outbox event
var outboxEvent = new OutboxEvent
{
Id = Guid.NewGuid(),
Type = "OrderCreated",
Data = JsonSerializer.Serialize(new OrderCreatedEvent(order.Id)),
CreatedAt = DateTime.UtcNow,
IsProcessed = false
};
_context.OutboxEvents.Add(outboxEvent);
await _context.SaveChangesAsync();
await transaction.CommitAsync();
}
catch
{
await transaction.RollbackAsync();
throw;
}
}
}
// Outbox Processor
public class OutboxProcessor : BackgroundService
{
private readonly IServiceProvider _serviceProvider;
protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
while (!stoppingToken.IsCancellationRequested)
{
await ProcessOutboxEventsAsync();
await Task.Delay(TimeSpan.FromSeconds(5), stoppingToken);
}
}
private async Task ProcessOutboxEventsAsync()
{
using var scope = _serviceProvider.CreateScope();
var context = scope.ServiceProvider.GetRequiredService<ApplicationDbContext>();
var serviceBus = scope.ServiceProvider.GetRequiredService<IServiceBus>();
var pendingEvents = await context.OutboxEvents
.Where(e => !e.IsProcessed)
.OrderBy(e => e.CreatedAt)
.Take(100)
.ToListAsync();
foreach (var outboxEvent in pendingEvents)
{
try
{
await serviceBus.PublishAsync(outboxEvent.Type, outboxEvent.Data);
outboxEvent.IsProcessed = true;
outboxEvent.ProcessedAt = DateTime.UtcNow;
await context.SaveChangesAsync();
}
catch (Exception ex)
{
// Log error and continue
}
}
}
}
Outbox Pattern Benefits: Guaranteed delivery, data consistency, and resilience to system failures.
Challenges include: Complexity, latency from asynchronous processing, and duplicate message handling requirements.
Modern .Net and Azure Integration
Latest .Net Features
.Net introduces significant performance improvements with Dynamic Profile-Guided Optimization (PGO) enabled by default, providing up to 20% performance gains. Enhanced JIT compilation with On Stack Replacement (OSR), AVX-512 support, and Native AOT improvements deliver faster startup times and reduced memory consumption.
Key scalability features include improved parallelism support, enhanced garbage collection optimized for high-throughput scenarios, and System.Text.Json improvements with source generators to avoid reflection overhead.
Azure Container Apps and Dapr Integration
Azure Container Apps provides fully managed Dapr integration with built-in support for Dapr runtime APIs, serverless container orchestration, and automatic scaling from zero to thousands of instances.
Azure Integration Architecture
graph TB
subgraph "Azure Cloud Services"
subgraph "Container Apps Environment"
CA1[Order Service<br/>Container App]
CA2[Payment Service<br/>Container App]
CA3[Inventory Service<br/>Container App]
end
subgraph "Dapr Runtime"
D1[Service Discovery]
D2[State Management]
D3[Pub/Sub]
D4[Secret Management]
end
subgraph "Azure Infrastructure"
ASB[Azure Service Bus<br/>Message Broker]
ACR[Azure Container Registry<br/>Image Storage]
KV[Azure Key Vault<br/>Secret Storage]
COSMOS[Cosmos DB<br/>State Store]
AI[Application Insights<br/>Monitoring]
end
end
subgraph "External Systems"
EXT[External APIs]
LEGACY[Legacy Systems]
end
CA1 --> D1
CA2 --> D2
CA3 --> D3
D1 -.-> ASB
D2 -.-> COSMOS
D3 -.-> ASB
D4 -.-> KV
CA1 --> AI
CA2 --> AI
CA3 --> AI
CA1 -.-> EXT
CA2 -.-> LEGACY
style CA1 fill:#e3f2fd
style CA2 fill:#c8e6c9
style CA3 fill:#fff3e0
style ASB fill:#ffeb3b
style COSMOS fill:#ffeb3b
style KV fill:#ffeb3b
.NET Aspire Integration Flow
sequenceDiagram
participant Dev as Developer
participant Aspire as .NET Aspire
participant Docker as Docker
participant ACA as Azure Container Apps
participant Dapr as Dapr Runtime
participant Azure as Azure Services
Dev->>Aspire: Define Distributed App
Aspire->>Docker: Generate Containers
Docker->>ACA: Deploy to Container Apps
ACA->>Dapr: Initialize Dapr Sidecar
Dapr->>Azure: Connect to Azure Services
Note over Dev,Azure: Simplified Cloud-Native Development
Azure-->>Dapr: Service Responses
Dapr-->>ACA: Process Results
ACA-->>Aspire: Runtime Telemetry
Aspire-->>Dev: Monitoring Dashboard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// .NET Aspire Integration
var builder = DistributedApplication.CreateBuilder(args);
var catalog = builder.AddProject<Projects.Catalog_API>("catalog")
.WithDaprSidecar();
var ordering = builder.AddProject<Projects.Ordering_API>("ordering")
.WithDaprSidecar();
var gateway = builder.AddProject<Projects.Gateway>("gateway")
.WithReference(catalog)
.WithReference(ordering);
builder.Build().Run();
.NET Aspire provides opinionated tooling for building observable, production-ready distributed applications with 40+ pre-built integrations and built-in telemetry capabilities.
Deployment and Infrastructure Patterns
Sidecar Pattern: Auxiliary Service Deployment
The Sidecar Pattern deploys auxiliary services alongside main applications, providing cross-cutting functionality without modifying the core application logic.
Sidecar Architecture Overview
graph TB
subgraph "Pod/Container Group"
subgraph "Main Application"
MA[Order Service<br/>.Net API]
end
subgraph "Sidecar Services"
LS[Logging Sidecar<br/>Fluentd]
MS[Monitoring Sidecar<br/>Prometheus Exporter]
SS[Security Sidecar<br/>Service Mesh Proxy]
CS[Configuration Sidecar<br/>Config Sync]
end
SV[Shared Volumes<br/>Logs, Config, Temp]
end
subgraph "External Services"
ELK[ELK Stack<br/>Log Aggregation]
PROM[Prometheus<br/>Metrics Collection]
VAULT[HashiCorp Vault<br/>Secret Management]
CONSUL[Consul<br/>Service Discovery]
end
MA -.-> SV
LS -.-> SV
MS -.-> SV
SS -.-> SV
CS -.-> SV
LS --> ELK
MS --> PROM
SS --> VAULT
CS --> CONSUL
style MA fill:#ffeb3b
style LS fill:#c8e6c9
style MS fill:#e3f2fd
style SS fill:#ffcdd2
style CS fill:#fff3e0
Sidecar Communication Patterns
sequenceDiagram
participant C as Client
participant P as Proxy Sidecar
participant M as Main App
participant L as Logging Sidecar
participant Mon as Monitoring Sidecar
participant E as External Services
C->>P: HTTP Request
P->>P: Apply Security Policies
P->>M: Forward Request
P->>Mon: Record Metrics
M->>M: Process Business Logic
M->>L: Write Application Logs
M->>P: Return Response
P->>Mon: Record Response Metrics
P->>C: Forward Response
L->>E: Ship Logs to ELK
Mon->>E: Send Metrics to Prometheus
Sidecar vs Traditional Architecture
graph LR
subgraph "Traditional Monolithic"
T1[Application + Infrastructure Code<br/>Tightly Coupled]
T1 --> T2[Cross-cutting Concerns<br/>Mixed with Business Logic]
T2 --> T3[Technology Lock-in<br/>Hard to Change]
end
subgraph "Sidecar Pattern"
S1[Clean Application<br/>Business Logic Only]
S2[Infrastructure Sidecars<br/>Loosely Coupled]
S1 -.-> S2
S2 --> S3[Technology Independence<br/>Easy to Swap]
end
style T3 fill:#ffcdd2
style S3 fill:#c8e6c9
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// Main Application Service
[ApiController]
[Route("api/[controller]")]
public class OrderController : ControllerBase
{
private readonly IOrderService _orderService;
[HttpPost]
public async Task<IActionResult> CreateOrder([FromBody] CreateOrderRequest request)
{
// Main business logic - sidecar handles logging, monitoring automatically
var order = await _orderService.CreateAsync(request);
return Ok(order);
}
}
// Sidecar Configuration (docker-compose.yml)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
version: '3.8'
services:
order-service:
image: myapp/order-service:latest
ports:
- "8080:80"
environment:
- ASPNETCORE_ENVIRONMENT=Production
# Logging Sidecar
fluentd-sidecar:
image: fluent/fluentd:latest
volumes:
- ./fluentd.conf:/fluentd/etc/fluent.conf
- order-logs:/var/log/orders
depends_on:
- order-service
# Monitoring Sidecar
prometheus-exporter:
image: prom/prometheus:latest
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
Sidecar Implementation with .NET:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Health Check Sidecar
public class HealthCheckSidecar : BackgroundService
{
private readonly IServiceProvider _serviceProvider;
private readonly ILogger<HealthCheckSidecar> _logger;
protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
while (!stoppingToken.IsCancellationRequested)
{
using var scope = _serviceProvider.CreateScope();
var healthCheckService = scope.ServiceProvider.GetRequiredService<HealthCheckService>();
var result = await healthCheckService.CheckHealthAsync(stoppingToken);
// Report health status to external monitoring
await ReportHealthStatusAsync(result);
await Task.Delay(TimeSpan.FromSeconds(30), stoppingToken);
}
}
}
When to use: Cross-cutting concerns like logging and monitoring, legacy application enhancement, or microservices requiring common functionality.
Advantages include: Language-agnostic implementation, isolated functionality, and simplified main application.
Disadvantages include: Increased resource consumption and orchestration complexity.
Ambassador Pattern: Proxy-Based Service Enhancement
The Ambassador Pattern creates helper services that send network requests on behalf of consumer applications, acting as an out-of-process proxy for enhanced connectivity.
Ambassador Pattern Architecture
graph TB
subgraph "Application Cluster"
subgraph "Consumer Application"
CA[Order Service<br/>Main Business Logic]
end
subgraph "Ambassador Services"
PA[Payment Ambassador<br/>Enhanced Connectivity]
IA[Inventory Ambassador<br/>Retry & Circuit Breaker]
NA[Notification Ambassador<br/>Rate Limiting]
end
end
subgraph "External Services"
PS[Payment Service<br/>Third-party API]
IS[Inventory Service<br/>Legacy System]
NS[Notification Service<br/>Email Provider]
end
CA --> PA
CA --> IA
CA --> NA
PA --> PS
IA --> IS
NA --> NS
style CA fill:#ffeb3b
style PA fill:#c8e6c9
style IA fill:#e3f2fd
style NA fill:#fff3e0
Ambassador Request Flow
sequenceDiagram
participant App as Main Application
participant Amb as Ambassador
participant Auth as Auth Service
participant Ext as External Service
participant Cache as Cache
participant Log as Logging
App->>Amb: Process Payment Request
Note over Amb: Ambassador Handles All Complexity
Amb->>Cache: Check Cached Token
Cache-->>Amb: Token Expired
Amb->>Auth: Acquire Access Token
Auth-->>Amb: New Token
Amb->>Cache: Cache Token
Amb->>Log: Log Request Start
Amb->>Ext: Payment API Call (with retry logic)
alt Success
Ext-->>Amb: Payment Success
Amb->>Log: Log Success
Amb-->>App: Payment Response
else Failure
Ext-->>Amb: Payment Failed
Amb->>Amb: Apply Circuit Breaker
Amb->>Log: Log Failure
Amb-->>App: Fallback Response
end
Ambassador vs Direct Integration
graph LR
subgraph "Direct Integration"
D1[Application Code<br/>+ Auth Logic<br/>+ Retry Logic<br/>+ Monitoring<br/>+ Circuit Breaker]
D1 --> D2[Complex Codebase<br/>Hard to Test<br/>Technology Coupling]
end
subgraph "Ambassador Pattern"
A1[Clean Application<br/>Business Logic Only]
A2[Ambassador Service<br/>Connectivity Logic]
A1 --> A2
A2 --> A3[Specialized Teams<br/>Easy Testing<br/>Technology Abstraction]
end
style D2 fill:#ffcdd2
style A3 fill:#c8e6c9
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Ambassador Service
public class PaymentAmbassador
{
private readonly HttpClient _httpClient;
private readonly ILogger<PaymentAmbassador> _logger;
private readonly CircuitBreakerPolicy _circuitBreaker;
public PaymentAmbassador(HttpClient httpClient, ILogger<PaymentAmbassador> logger)
{
_httpClient = httpClient;
_logger = logger;
_circuitBreaker = Policy
.Handle<HttpRequestException>()
.CircuitBreakerAsync(
exceptionsAllowedBeforeBreaking: 3,
durationOfBreak: TimeSpan.FromSeconds(30));
}
public async Task<PaymentResponse> ProcessPaymentAsync(PaymentRequest request)
{
return await _circuitBreaker.ExecuteAsync(async () =>
{
_logger.LogInformation("Processing payment for Order {OrderId}", request.OrderId);
// Add authentication headers
_httpClient.DefaultRequestHeaders.Authorization =
new AuthenticationHeaderValue("Bearer", await GetAccessTokenAsync());
// Add tracing headers
_httpClient.DefaultRequestHeaders.Add("X-Trace-Id", Activity.Current?.Id);
var response = await _httpClient.PostAsJsonAsync("/api/payments", request);
response.EnsureSuccessStatusCode();
var result = await response.Content.ReadFromJsonAsync<PaymentResponse>();
_logger.LogInformation("Payment processed successfully for Order {OrderId}", request.OrderId);
return result;
});
}
private async Task<string> GetAccessTokenAsync()
{
// Token acquisition logic
return await GetCachedTokenAsync();
}
}
// Main Application using Ambassador
public class OrderService
{
private readonly PaymentAmbassador _paymentAmbassador;
public async Task<Order> ProcessOrderAsync(CreateOrderRequest request)
{
var order = new Order(request);
// Ambassador handles all payment complexity
var paymentResult = await _paymentAmbassador.ProcessPaymentAsync(
new PaymentRequest(order.Id, order.TotalAmount));
if (paymentResult.IsSuccessful)
{
order.MarkAsPaid();
}
return order;
}
}
When to use: Legacy application enhancement, common connectivity patterns, or specialized network requirements.
Advantages include: Specialized team implementation, technology abstraction, and enhanced capabilities.
Disadvantages include: Additional network latency and complexity in failure handling.
Bulkhead Pattern: Resource Isolation for Resilience
The Bulkhead Pattern isolates resources into separate pools to prevent failure in one component from affecting the entire system, similar to watertight compartments in a ship.
Resource Isolation Architecture
graph TB
subgraph "Application Layer"
AC[API Controller]
end
subgraph "Bulkhead Service Pools"
subgraph "Critical Services Pool"
CP1[Thread Pool: 10]
CP2[Connection Pool: 5]
CP3[Memory Pool: 2GB]
end
subgraph "Standard Services Pool"
SP1[Thread Pool: 5]
SP2[Connection Pool: 3]
SP3[Memory Pool: 1GB]
end
subgraph "Background Tasks Pool"
BP1[Thread Pool: 3]
BP2[Connection Pool: 2]
BP3[Memory Pool: 512MB]
end
end
subgraph "Service Types"
CS[Critical Services<br/>Payment, Authentication]
SS[Standard Services<br/>Product Catalog, Search]
BT[Background Tasks<br/>Analytics, Cleanup]
end
AC --> CP1
AC --> SP1
AC --> BP1
CP1 --> CS
SP1 --> SS
BP1 --> BT
style CP1 fill:#ffcdd2
style SP1 fill:#fff3e0
style BP1 fill:#e8f5e8
style CS fill:#ffcdd2
style SS fill:#fff3e0
style BT fill:#e8f5e8
Failure Isolation Demonstration
graph LR
subgraph "Without Bulkhead"
WB1[Shared Thread Pool<br/>20 Threads] --> WB2[All Services<br/>Competing for Resources]
WB2 --> WB3[One Service Failure<br/>Affects All Services]
end
subgraph "With Bulkhead"
B1[Critical Pool<br/>10 Threads] --> B2[Payment Service<br/>Isolated & Protected]
B3[Standard Pool<br/>5 Threads] --> B4[Catalog Service<br/>Limited Impact]
B5[Background Pool<br/>3 Threads] --> B6[Analytics Service<br/>Failure Contained]
end
style WB3 fill:#ffcdd2
style B2 fill:#c8e6c9
style B4 fill:#c8e6c9
style B6 fill:#c8e6c9
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// Resource Pool Configuration
public class BulkheadConfiguration
{
public int CriticalServiceThreads { get; set; } = 10;
public int StandardServiceThreads { get; set; } = 5;
public int BackgroundTaskThreads { get; set; } = 3;
}
// Bulkhead Implementation
public class BulkheadService
{
private readonly SemaphoreSlim _criticalSemaphore;
private readonly SemaphoreSlim _standardSemaphore;
private readonly SemaphoreSlim _backgroundSemaphore;
public BulkheadService(BulkheadConfiguration config)
{
_criticalSemaphore = new SemaphoreSlim(config.CriticalServiceThreads);
_standardSemaphore = new SemaphoreSlim(config.StandardServiceThreads);
_backgroundSemaphore = new SemaphoreSlim(config.BackgroundTaskThreads);
}
public async Task<T> ExecuteCriticalOperationAsync<T>(Func<Task<T>> operation)
{
await _criticalSemaphore.WaitAsync();
try
{
return await operation();
}
finally
{
_criticalSemaphore.Release();
}
}
public async Task<T> ExecuteStandardOperationAsync<T>(Func<Task<T>> operation)
{
await _standardSemaphore.WaitAsync();
try
{
return await operation();
}
finally
{
_standardSemaphore.Release();
}
}
}
// Usage in Controller
[ApiController]
public class ProductController : ControllerBase
{
private readonly BulkheadService _bulkheadService;
private readonly IProductService _productService;
private readonly IRecommendationService _recommendationService;
[HttpGet("{id}")]
public async Task<IActionResult> GetProduct(int id)
{
// Critical operation - guaranteed resources
var product = await _bulkheadService.ExecuteCriticalOperationAsync(async () =>
await _productService.GetByIdAsync(id));
// Non-critical operation - limited resources
var recommendations = await _bulkheadService.ExecuteStandardOperationAsync(async () =>
await _recommendationService.GetRecommendationsAsync(id));
return Ok(new { Product = product, Recommendations = recommendations });
}
}
When to use: High-traffic applications, mixed workload priorities, or systems requiring guaranteed resource availability.
Advantages include: Failure isolation, resource optimization, and improved system resilience.
Disadvantages include: Increased complexity and potential resource underutilization.
Event Sourcing Pattern: Complete Audit Trail
Event Sourcing stores application state as a sequence of events rather than current state, providing complete audit trails and enabling temporal queries.
Event Sourcing Architecture
graph TB
subgraph "Command Side"
C1[Commands] --> AR[Aggregate Root]
AR --> ES[Event Store]
end
subgraph "Event Store"
ES --> E1[Event Stream 1<br/>Order-123]
ES --> E2[Event Stream 2<br/>Order-456]
ES --> E3[Event Stream 3<br/>Order-789]
end
subgraph "Event Stream Details"
E1 --> EV1[OrderCreated<br/>v1]
EV1 --> EV2[ItemAdded<br/>v2]
EV2 --> EV3[PaymentProcessed<br/>v3]
EV3 --> EV4[OrderShipped<br/>v4]
end
subgraph "Read Side (CQRS)"
ES --> EP[Event Projections]
EP --> RM1[Read Model 1<br/>Order Summary]
EP --> RM2[Read Model 2<br/>Analytics]
EP --> RM3[Read Model 3<br/>Audit Log]
end
subgraph "Temporal Queries"
ES --> TQ[Time Travel Queries]
TQ --> HS1[State at 2024-01-01]
TQ --> HS2[State at 2024-06-01]
TQ --> HS3[Current State]
end
style AR fill:#ffeb3b
style ES fill:#e3f2fd
style EP fill:#c8e6c9
style TQ fill:#fff3e0
Event Sourcing vs Traditional Storage
graph LR
subgraph "Traditional CRUD"
T1[Current State Only<br/>Order: {Status: Shipped}] --> T2[Lost History<br/>No Audit Trail]
T2 --> T3[Update Overwrites<br/>Previous Data]
end
subgraph "Event Sourcing"
E1[Event Stream<br/>All Changes Recorded] --> E2[Complete History<br/>Full Audit Trail]
E2 --> E3[Append Only<br/>Immutable Events]
E3 --> E4[Temporal Queries<br/>State at Any Point]
end
style T3 fill:#ffcdd2
style E4 fill:#c8e6c9
Event Stream Timeline
timeline
title Order-123 Event Timeline
2024-01-15 09:00 : OrderCreated
: Customer: "John Doe"
: Items: [Product-A, Product-B]
2024-01-15 09:15 : ItemAdded
: Product: "Product-C"
: Quantity: 2
2024-01-15 10:30 : PaymentProcessed
: Amount: $150.00
: Method: "Credit Card"
2024-01-16 14:00 : OrderShipped
: Carrier: "FedEx"
: Tracking: "123456789"
2024-01-18 16:00 : OrderDelivered
: Status: "Completed"
: Signature: "J.Doe"
Implementation Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// Domain Events
public abstract record DomainEvent(Guid AggregateId, DateTime OccurredAt);
public record OrderCreated(Guid OrderId, string CustomerId, List<OrderItem> Items, DateTime OccurredAt)
: DomainEvent(OrderId, OccurredAt);
public record OrderItemAdded(Guid OrderId, string ProductId, int Quantity, decimal Price, DateTime OccurredAt)
: DomainEvent(OrderId, OccurredAt);
public record OrderShipped(Guid OrderId, string TrackingNumber, DateTime OccurredAt)
: DomainEvent(OrderId, OccurredAt);
// Event Store
public interface IEventStore
{
Task SaveEventsAsync(Guid aggregateId, IEnumerable<DomainEvent> events, long expectedVersion);
Task<IEnumerable<DomainEvent>> GetEventsAsync(Guid aggregateId);
Task<IEnumerable<DomainEvent>> GetEventsAsync(Guid aggregateId, DateTime fromDate);
}
// Aggregate Root with Event Sourcing
public class Order
{
private readonly List<DomainEvent> _uncommittedEvents = new();
public Guid Id { get; private set; }
public string CustomerId { get; private set; }
public List<OrderItem> Items { get; private set; } = new();
public OrderStatus Status { get; private set; }
public long Version { get; private set; }
// Constructor for new orders
public Order(string customerId, List<OrderItem> items)
{
var orderCreated = new OrderCreated(Guid.NewGuid(), customerId, items, DateTime.UtcNow);
Apply(orderCreated);
_uncommittedEvents.Add(orderCreated);
}
// Constructor for rebuilding from events
public Order(IEnumerable<DomainEvent> events)
{
foreach (var @event in events)
{
Apply(@event);
Version++;
}
}
public void AddItem(string productId, int quantity, decimal price)
{
var itemAdded = new OrderItemAdded(Id, productId, quantity, price, DateTime.UtcNow);
Apply(itemAdded);
_uncommittedEvents.Add(itemAdded);
}
public void Ship(string trackingNumber)
{
var orderShipped = new OrderShipped(Id, trackingNumber, DateTime.UtcNow);
Apply(orderShipped);
_uncommittedEvents.Add(orderShipped);
}
private void Apply(DomainEvent @event)
{
switch (@event)
{
case OrderCreated created:
Id = created.OrderId;
CustomerId = created.CustomerId;
Items = created.Items.ToList();
Status = OrderStatus.Created;
break;
case OrderItemAdded itemAdded:
Items.Add(new OrderItem(itemAdded.ProductId, itemAdded.Quantity, itemAdded.Price));
break;
case OrderShipped shipped:
Status = OrderStatus.Shipped;
break;
}
}
public IEnumerable<DomainEvent> GetUncommittedEvents() => _uncommittedEvents.AsReadOnly();
public void MarkEventsAsCommitted() => _uncommittedEvents.Clear();
}
// Repository Implementation
public class OrderRepository
{
private readonly IEventStore _eventStore;
public async Task SaveAsync(Order order)
{
var events = order.GetUncommittedEvents();
if (events.Any())
{
await _eventStore.SaveEventsAsync(order.Id, events, order.Version);
order.MarkEventsAsCommitted();
}
}
public async Task<Order> GetByIdAsync(Guid orderId)
{
var events = await _eventStore.GetEventsAsync(orderId);
return events.Any() ? new Order(events) : null;
}
public async Task<Order> GetOrderStateAtDateAsync(Guid orderId, DateTime asOfDate)
{
var events = await _eventStore.GetEventsAsync(orderId, asOfDate);
return events.Any() ? new Order(events) : null;
}
}
Event Sourcing Benefits: Complete audit trail, temporal queries, debugging capabilities, and natural fit with event-driven architectures.
Challenges include: Complexity, eventual consistency, and query difficulty requiring CQRS implementation.
Pattern Combination Strategies
Successful architectures often combine multiple patterns. Here are proven combinations:
graph LR
subgraph "Enterprise Combo"
E1[Onion Architecture] --> E2[CQRS]
E2 --> E3[Event Sourcing]
E3 --> E4[Saga Pattern]
end
subgraph "Microservices Combo"
M1[API Gateway] --> M2[BFF]
M2 --> M3[Circuit Breaker]
M3 --> M4[Bulkhead]
end
subgraph "Legacy Migration Combo"
L1[Strangler Fig] --> L2[Event-Driven]
L2 --> L3[Outbox Pattern]
end
style E1 fill:#ffeb3b
style M1 fill:#c8e6c9
style L1 fill:#fff3e0
Common Successful Combinations:
Enterprise-Grade Pattern Combinations
- Onion + CQRS + Event Sourcing: Complex enterprise applications with rich business logic
- Use case: Financial systems, healthcare platforms, enterprise resource planning
- Benefits: Domain-driven design, complete audit trail, high performance
- Complexity: High, requires experienced team
- Hexagonal + Event-Driven + Bulkhead: Technology-agnostic business logic with asynchronous communication and resource isolation
- Use case: Microservices architectures, distributed systems
- Benefits: Technology independence, fault isolation, scalability
- Complexity: Medium to High
Client-Facing Pattern Combinations
- API Gateway + BFF + Circuit Breaker: Client-facing applications requiring resilience and optimization
- Use case: Multi-platform applications (web, mobile, IoT)
- Benefits: Client optimization, centralized routing, fault tolerance
- Complexity: Medium
- BFF + Serverless + Ambassador: Modern client-optimized backends
- Use case: Event-driven applications with multiple clients
- Benefits: Auto-scaling, cost efficiency, enhanced connectivity
- Complexity: Medium
Legacy Modernization Combinations
- Strangler Fig + BFF + Serverless: Modernizing legacy systems using client-specific backends and event-driven Functions
- Use case: Legacy system modernization with minimal disruption
- Benefits: Gradual migration, reduced risk, modern architecture
- Complexity: Medium to High
- Strangler Fig + Event-Driven + Outbox: Reliable legacy integration with modern event systems
- Use case: Legacy systems requiring reliable message delivery
- Benefits: Reliable messaging, gradual modernization, data consistency
- Complexity: High
Resilience-Focused Combinations
- Circuit Breaker + Bulkhead + Outbox: Comprehensive resilience with failure isolation and reliable messaging
- Use case: High-availability systems, critical business applications
- Benefits: Fault tolerance, resource isolation, message reliability
- Complexity: Medium
- Sidecar + Ambassador + Circuit Breaker: Infrastructure patterns for cross-cutting concerns
- Use case: Microservices requiring common infrastructure capabilities
- Benefits: Technology independence, enhanced connectivity, fault tolerance
- Complexity: Medium to High
Pattern Relationship Map
Understanding how patterns complement each other in modern architectures:
1. Pattern Categories Overview
graph LR
subgraph "Pattern Categories"
F["🏗️ FOUNDATION<br/>Core Architecture<br/>▫️ Layered<br/>▫️ Hexagonal<br/>▫️ Onion"]
C["💬 COMMUNICATION<br/>Data & Messages<br/>▫️ CQRS<br/>▫️ Event-Driven<br/>▫️ Saga"]
I["🔗 INTEGRATION<br/>Service Connection<br/>▫️ API Gateway<br/>▫️ BFF<br/>▫️ Serverless<br/>▫️ Strangler Fig"]
R["🛡️ RESILIENCE<br/>Fault Tolerance<br/>▫️ Circuit Breaker<br/>▫️ Bulkhead<br/>▫️ Outbox"]
IN["🚀 INFRASTRUCTURE<br/>Deployment Support<br/>▫️ Sidecar<br/>▫️ Ambassador"]
D["📊 DATA & EVENTS<br/>State Management<br/>▫️ Event Sourcing"]
end
F --> C
C --> I
I --> R
R --> IN
C --> D
style F fill:#e8f5e8,stroke:#4caf50,stroke-width:3px
style C fill:#f3e5f5,stroke:#9c27b0,stroke-width:3px
style I fill:#e1f5fe,stroke:#03a9f4,stroke-width:3px
style R fill:#fff8e1,stroke:#ffc107,stroke-width:3px
style IN fill:#fce4ec,stroke:#e91e63,stroke-width:3px
style D fill:#f1f8e9,stroke:#8bc34a,stroke-width:3px
2. Foundation to Communication Flow
graph TB
subgraph "🏗️ Foundation Patterns"
F1["LAYERED<br/>Simple 3-tier<br/>👥 Junior Level<br/>⭐ Low Complexity"]
F2["HEXAGONAL<br/>Ports & Adapters<br/>👨💻 Senior Level<br/>⭐⭐ Medium Complexity"]
F3["ONION<br/>Domain-Centric<br/>👨💻 Senior Level<br/>⭐⭐ Medium Complexity"]
end
subgraph "💬 Communication Patterns"
C1["CQRS<br/>Separate Read/Write<br/>👨💻 Senior Level<br/>⭐⭐ Medium Complexity"]
C2["EVENT-DRIVEN<br/>Async Messaging<br/>👨💻 Senior Level<br/>⭐⭐⭐ High Complexity"]
C3["SAGA<br/>Distributed Transactions<br/>👨💻 Senior Level<br/>⭐⭐⭐ High Complexity"]
end
F2 ==>|"Enables Clean Testing"| C1
F3 ==>|"Domain-Driven Design"| C1
C1 ==>|"Often Combined"| C2
C2 ==>|"Orchestrates Complex Workflows"| C3
style F1 fill:#e8f5e8,stroke:#4caf50,stroke-width:3px,color:#000
style F2 fill:#e8f5e8,stroke:#4caf50,stroke-width:3px,color:#000
style F3 fill:#e8f5e8,stroke:#4caf50,stroke-width:3px,color:#000
style C1 fill:#f3e5f5,stroke:#9c27b0,stroke-width:3px,color:#000
style C2 fill:#f3e5f5,stroke:#9c27b0,stroke-width:3px,color:#000
style C3 fill:#f3e5f5,stroke:#9c27b0,stroke-width:3px,color:#000
3. Integration and Resilience Patterns
graph TB
subgraph "� Integration Patterns"
I1["API GATEWAY<br/>Single Entry Point<br/>� Intermediate<br/>⭐⭐ Medium Complexity"]
I2["BFF<br/>Backend for Frontend<br/>👥 Intermediate<br/>⭐ Low Complexity"]
I3["SERVERLESS<br/>Event-Driven Functions<br/>� Intermediate<br/>⭐ Low Complexity"]
I4["STRANGLER FIG<br/>Legacy Modernization<br/>👨💻 Senior<br/>⭐⭐ Medium Complexity"]
end
subgraph "🛡️ Resilience Patterns"
R1["CIRCUIT BREAKER<br/>Fail Fast Protection<br/>👥 Intermediate<br/>⭐ Low Complexity"]
R2["BULKHEAD<br/>Resource Isolation<br/>👥 Intermediate<br/>⭐ Low Complexity"]
R3["OUTBOX<br/>Reliable Messaging<br/>👨💻 Senior<br/>⭐⭐ Medium Complexity"]
end
I1 ==>|"Client Optimization"| I2
I1 ==>|"Auto-Scaling"| I3
I1 ==>|"Protection Layer"| R1
R1 ==>|"Resource Protection"| R2
I4 ==>|"Modern Architecture"| I1
style I1 fill:#e1f5fe,stroke:#03a9f4,stroke-width:3px,color:#000
style I2 fill:#e1f5fe,stroke:#03a9f4,stroke-width:3px,color:#000
style I3 fill:#e1f5fe,stroke:#03a9f4,stroke-width:3px,color:#000
style I4 fill:#fff3e0,stroke:#ff9800,stroke-width:3px,color:#000
style R1 fill:#fff8e1,stroke:#ffc107,stroke-width:3px,color:#000
style R2 fill:#fff8e1,stroke:#ffc107,stroke-width:3px,color:#000
style R3 fill:#fff8e1,stroke:#ffc107,stroke-width:3px,color:#000
4. Infrastructure and Data Patterns
graph TB
subgraph "🚀 Infrastructure Patterns"
IN1["SIDECAR<br/>Cross-Cutting Concerns<br/>👥 Intermediate<br/>⭐⭐ Medium Complexity"]
IN2["AMBASSADOR<br/>External Service Proxy<br/>👥 Intermediate<br/>⭐⭐ Medium Complexity"]
end
subgraph "📊 Data & Event Patterns"
D1["EVENT SOURCING<br/>Complete Audit Trail<br/>👨💻 Senior<br/>⭐⭐⭐ High Complexity"]
end
subgraph "Integration Support"
IS1["Enhanced Monitoring"]
IS2["Service Mesh"]
IS3["Temporal Queries"]
end
IN1 ==>|"Provides"| IS1
IN2 ==>|"Enables"| IS2
D1 ==>|"Supports"| IS3
style IN1 fill:#fce4ec,stroke:#e91e63,stroke-width:3px,color:#000
style IN2 fill:#fce4ec,stroke:#e91e63,stroke-width:3px,color:#000
style D1 fill:#f1f8e9,stroke:#8bc34a,stroke-width:3px,color:#000
style IS1 fill:#e8eaf6,stroke:#3f51b5,stroke-width:2px,color:#000
style IS2 fill:#e8eaf6,stroke:#3f51b5,stroke-width:2px,color:#000
style IS3 fill:#e8eaf6,stroke:#3f51b5,stroke-width:2px,color:#000
5. Common Pattern Combinations
graph LR
subgraph "🏢 Enterprise Stack"
E1["Onion Architecture"]
E2["CQRS"]
E3["Event Sourcing"]
E4["Outbox Pattern"]
E1 --> E2
E2 --> E3
E2 --> E4
end
subgraph "🌐 Microservices Stack"
M1["Hexagonal Architecture"]
M2["Event-Driven"]
M3["API Gateway"]
M4["Circuit Breaker"]
M1 --> M2
M2 --> M3
M3 --> M4
end
subgraph "☁️ Cloud-Native Stack"
C1["Serverless"]
C2["BFF"]
C3["Ambassador"]
C4["Sidecar"]
C1 --> C2
C2 --> C3
C3 --> C4
end
subgraph "🔄 Legacy Modernization"
L1["Strangler Fig"]
L2["API Gateway"]
L3["Event-Driven"]
L4["Circuit Breaker"]
L1 --> L2
L2 --> L3
L3 --> L4
end
style E1 fill:#f3e5f5,stroke:#9c27b0,stroke-width:2px
style M1 fill:#e1f5fe,stroke:#03a9f4,stroke-width:2px
style C1 fill:#e8f5e8,stroke:#4caf50,stroke-width:2px
style L1 fill:#fff3e0,stroke:#ff9800,stroke-width:2px
Relationship Types Explained:
- Solid arrows (—›): Strong dependencies or common combinations
- Dotted arrows (-.→): Optional enhancements or frequent pairings
- Line thickness: Indicates how commonly patterns are used together
- Color coding: Groups patterns by primary purpose and complexity
Key Architectural Combinations:
- Modern Microservices Stack:
Hexagonal + CQRS + Event-Driven + API Gateway + Circuit Breaker
- Enterprise Application:
Onion + CQRS + Outbox + BFF + Sidecar
- Cloud-Native Solution:
Serverless + Event-Driven + Circuit Breaker + Ambassador
- Legacy Modernization:
Strangler Fig + Hexagonal + Event-Driven + API Gateway
Architecture Decision Framework
Comprehensive Pattern Comparison Matrix
Pattern | Complexity | Scalability | Maintainability | Team Skill | Time to Value | Primary Use Cases |
---|---|---|---|---|---|---|
🏗️ Foundation Patterns | ||||||
Layered | Low ⭐ | Medium ⭐⭐ | Medium ⭐⭐ | Junior+ 👥 | Fast ⚡ | CRUD apps, rapid prototyping |
Hexagonal | Medium ⭐⭐ | High ⭐⭐⭐ | High ⭐⭐⭐ | Senior 👨💻 | Medium 🔄 | Complex business logic, testability |
Onion | Medium ⭐⭐ | High ⭐⭐⭐ | High ⭐⭐⭐ | Senior 👨💻 | Medium 🔄 | DDD, enterprise applications |
💬 Communication Patterns | ||||||
CQRS | Medium ⭐⭐ | Very High ⭐⭐⭐⭐ | Medium ⭐⭐ | Senior 👨💻 | Medium 🔄 | Read/write optimization |
Event-Driven | High ⭐⭐⭐ | Very High ⭐⭐⭐⭐ | Medium ⭐⭐ | Senior 👨💻 | Slow 🐌 | Microservices, real-time |
Saga | High ⭐⭐⭐ | High ⭐⭐⭐ | Medium ⭐⭐ | Senior 👨💻 | Slow 🐌 | Distributed transactions |
🔗 Integration Patterns | ||||||
API Gateway | Medium ⭐⭐ | High ⭐⭐⭐ | Medium ⭐⭐ | Intermediate 👥 | Fast ⚡ | Service aggregation |
BFF | Low ⭐ | Medium ⭐⭐ | Medium ⭐⭐ | Intermediate 👥 | Fast ⚡ | Client-specific APIs |
Serverless | Low ⭐ | Very High ⭐⭐⭐⭐ | Medium ⭐⭐ | Intermediate 👥 | Fast ⚡ | Event-driven, auto-scale |
Strangler Fig | Medium ⭐⭐ | Medium ⭐⭐ | High ⭐⭐⭐ | Senior 👨💻 | Slow 🐌 | Legacy modernization |
🛡️ Resilience Patterns | ||||||
Circuit Breaker | Low ⭐ | High ⭐⭐⭐ | High ⭐⭐⭐ | Intermediate 👥 | Fast ⚡ | Fault tolerance |
Bulkhead | Low ⭐ | High ⭐⭐⭐ | High ⭐⭐⭐ | Intermediate 👥 | Fast ⚡ | Resource isolation |
Outbox | Medium ⭐⭐ | Medium ⭐⭐ | High ⭐⭐⭐ | Senior 👨💻 | Medium 🔄 | Reliable messaging |
🚀 Infrastructure Patterns | ||||||
Sidecar | Medium ⭐⭐ | High ⭐⭐⭐ | High ⭐⭐⭐ | Intermediate 👥 | Medium 🔄 | Cross-cutting concerns |
Ambassador | Medium ⭐⭐ | High ⭐⭐⭐ | High ⭐⭐⭐ | Intermediate 👥 | Medium 🔄 | External service proxy |
📊 Data & Event Patterns | ||||||
Event Sourcing | High ⭐⭐⭐ | High ⭐⭐⭐ | Medium ⭐⭐ | Senior 👨💻 | Slow 🐌 | Audit trail, temporal queries |
Team Size and Project Type Recommendations
graph LR
subgraph TeamSize["👥 Team Size Guide"]
T1["Small Team<br/>(1-3 devs)<br/>📊 Focus: Simplicity"]
T2["Medium Team<br/>(4-8 devs)<br/>📊 Focus: Structure"]
T3["Large Team<br/>(9+ devs)<br/>📊 Focus: Boundaries"]
end
subgraph ProjectType["🎯 Project Type"]
P1["MVP/Prototype<br/>⚡ Speed First"]
P2["Enterprise App<br/>🏢 Quality First"]
P3["Microservices<br/>🌐 Scale First"]
P4["Legacy Migration<br/>🔄 Safety First"]
end
T1 --> P1
T1 --> |"with guidance"| P2
T2 --> P2
T2 --> P3
T3 --> P2
T3 --> P3
T3 --> P4
P1 -.-> R1["✅ Layered + Serverless<br/>🚀 API Gateway + Circuit Breaker"]
P2 -.-> R2["✅ Hexagonal/Onion + CQRS<br/>🚀 BFF + Outbox + Sidecar"]
P3 -.-> R3["✅ Event-Driven + API Gateway<br/>🚀 Circuit Breaker + Ambassador + Saga"]
P4 -.-> R4["✅ Strangler Fig + Hexagonal<br/>🚀 Event-Driven + API Gateway"]
style T1 fill:#e8f5e8
style T2 fill:#fff3e0
style T3 fill:#ffebee
style P1 fill:#e3f2fd
style P2 fill:#f3e5f5
style P3 fill:#e8f5e8
style P4 fill:#fff8e1
| BFF | Medium | High | Medium | Intermediate | Multi-platform apps, API optimization | | Sidecar | Low | Medium | High | Intermediate | Cross-cutting concerns, auxiliary services | | Ambassador | Medium | Medium | High | Intermediate | Legacy enhancement, proxy patterns | | Bulkhead | Medium | High | High | Senior | Resource isolation, fault tolerance | | Event Sourcing | High | Very High | Medium | Senior | Audit trails, temporal queries |
Pattern Combination Strategies
Successful architectures often combine multiple patterns. Common combinations include:
Performance Impact Comparison
graph TB
subgraph "Performance Metrics by Pattern"
subgraph "Low Latency (< 50ms)"
LL1[Layered Architecture]
LL2[Repository Pattern]
LL3[Circuit Breaker]
end
subgraph "Medium Latency (50-200ms)"
ML1[Hexagonal Architecture]
ML2[API Gateway]
ML3[CQRS]
ML4[BFF]
end
subgraph "Higher Latency (200ms+)"
HL1[Event-Driven Architecture]
HL2[Saga Pattern]
HL3[Event Sourcing]
HL4[Microservices Mesh]
end
end
subgraph "Scalability Rating"
subgraph "High Scalability (1000+ TPS)"
HS1[CQRS + Event Sourcing]
HS2[Serverless Functions]
HS3[Event-Driven + Bulkhead]
end
subgraph "Medium Scalability (100-1000 TPS)"
MS1[API Gateway + BFF]
MS2[Hexagonal + Repository]
MS3[Layered + Caching]
end
subgraph "Limited Scalability (< 100 TPS)"
LS1[Simple Layered]
LS2[Monolithic Architecture]
end
end
style LL1 fill:#c8e6c9
style LL2 fill:#c8e6c9
style LL3 fill:#c8e6c9
style HS1 fill:#ffeb3b
style HS2 fill:#ffeb3b
style HS3 fill:#ffeb3b
style HL1 fill:#ffcdd2
style HL2 fill:#ffcdd2
style HL3 fill:#ffcdd2
Pattern Migration Paths
flowchart TD
Start[Existing System] --> Assessment{Current Architecture?}
Assessment -->|Monolith| Mono[Monolithic System]
Assessment -->|Layered| Layer[Layered Architecture]
Assessment -->|Legacy| Legacy[Legacy System]
Mono --> Step1[Step 1: Add API Gateway]
Layer --> Step2[Step 2: Implement CQRS]
Legacy --> Step3[Step 3: Strangler Fig Pattern]
Step1 --> Step4[Step 4: Extract Microservices]
Step2 --> Step5[Step 5: Add Event-Driven]
Step3 --> Step6[Step 6: Modern Service Implementation]
Step4 --> Final1[Modern Microservices]
Step5 --> Final2[Event-Driven Architecture]
Step6 --> Final3[Modernized System]
Final1 --> Optimize[Optimization Phase]
Final2 --> Optimize
Final3 --> Optimize
Optimize --> Patterns[Add Advanced Patterns:<br/>• Circuit Breaker<br/>• Bulkhead<br/>• Event Sourcing<br/>• Saga]
style Start fill:#e3f2fd
style Optimize fill:#ffeb3b
style Patterns fill:#c8e6c9
- CQRS + Event-Driven + Event Sourcing: Complete event-based architecture with separated read/write models, event communication, and complete audit trails
- BFF + API Gateway: Client-optimized backends with centralized routing and cross-cutting concerns
- Sidecar + Ambassador: Auxiliary services with enhanced connectivity patterns
- Hexagonal + Event-Driven + Bulkhead: Technology-agnostic business logic with asynchronous communication and resource isolation
- Strangler Fig + BFF + Serverless: Modernizing legacy systems using client-specific backends and event-driven Functions
- Circuit Breaker + Bulkhead + Outbox: Comprehensive resilience with failure isolation and reliable messaging
Best Practices for Implementation
Pattern Implementation Lifecycle
graph TD
A[Assessment Phase] --> B[Design Phase]
B --> C[Implementation Phase]
C --> D[Testing Phase]
D --> E[Deployment Phase]
E --> F[Monitoring Phase]
F --> G[Evolution Phase]
G --> A
A --> A1[Team Skills Assessment<br/>Current Architecture Review<br/>Business Requirements<br/>Performance Needs]
B --> B1[Pattern Selection<br/>Architecture Design<br/>Technology Stack<br/>Migration Strategy]
C --> C1[Code Implementation<br/>Infrastructure Setup<br/>Integration Development<br/>Documentation]
D --> D1[Unit Testing<br/>Integration Testing<br/>Performance Testing<br/>Security Testing]
E --> E1[Blue-Green Deployment<br/>Feature Flags<br/>Gradual Rollout<br/>Rollback Planning]
F --> F1[Performance Monitoring<br/>Error Tracking<br/>Business Metrics<br/>Health Checks]
G --> G1[Pattern Effectiveness<br/>Scaling Needs<br/>Technology Updates<br/>Optimization]
style A fill:#e3f2fd
style B fill:#fff3e0
style C fill:#c8e6c9
style D fill:#ffcdd2
style E fill:#f3e5f5
style F fill:#ffeb3b
style G fill:#e1bee7
Team Skill Requirements Matrix
graph TB
subgraph "Junior Level (0-2 years)"
J1[Layered Architecture ✓]
J2[API Gateway ✓]
J3[Circuit Breaker ✓]
end
subgraph "Intermediate Level (2-5 years)"
I1[Hexagonal Architecture ✓]
I2[CQRS ✓]
I3[BFF ✓]
I4[Serverless ✓]
I5[Sidecar ✓]
I6[Outbox ✓]
end
subgraph "Senior Level (5+ years)"
S1[Onion Architecture ✓]
S2[Event-Driven ✓]
S3[Saga Pattern ✓]
S4[Strangler Fig ✓]
S5[Ambassador ✓]
S6[Bulkhead ✓]
end
subgraph "Expert Level (8+ years)"
E1[Event Sourcing ✓]
E2[Complex Pattern Combinations ✓]
E3[Enterprise Architecture ✓]
end
style J1 fill:#c8e6c9
style J2 fill:#c8e6c9
style J3 fill:#c8e6c9
style I1 fill:#fff3e0
style I2 fill:#fff3e0
style I3 fill:#fff3e0
style I4 fill:#fff3e0
style I5 fill:#fff3e0
style I6 fill:#fff3e0
style S1 fill:#ffcdd2
style S2 fill:#ffcdd2
style S3 fill:#ffcdd2
style S4 fill:#ffcdd2
style S5 fill:#ffcdd2
style S6 fill:#ffcdd2
style E1 fill:#f3e5f5
style E2 fill:#f3e5f5
style E3 fill:#f3e5f5
Start with architectural assessment
Begin with a thorough assessment of your current system, team capabilities, and business requirements. Simple applications benefit from Layered Architecture, while complex enterprise systems require Onion or Hexagonal approaches.
Implement monitoring and observability
Modern .Net applications should leverage OpenTelemetry for distributed tracing, Application Insights for performance monitoring, and custom metrics for business-specific monitoring.
Comprehensive Observability Architecture
graph TB
subgraph "Application Layer"
APP1[Order Service]
APP2[Payment Service]
APP3[Inventory Service]
end
subgraph "Observability Stack"
subgraph "Metrics Collection"
PROM[Prometheus]
GRAFANA[Grafana Dashboards]
end
subgraph "Distributed Tracing"
JAEGER[Jaeger Tracing]
ZIPKIN[Zipkin Alternative]
end
subgraph "Logging"
ELK[ELK Stack]
FLUENT[Fluentd/Fluent Bit]
end
subgraph "Azure Monitoring"
AI[Application Insights]
LAW[Log Analytics Workspace]
ALERTS[Azure Alerts]
end
end
subgraph "OpenTelemetry"
OTEL[OpenTelemetry Collector]
SDK[.NET SDK Integration]
end
APP1 --> SDK
APP2 --> SDK
APP3 --> SDK
SDK --> OTEL
OTEL --> PROM
OTEL --> JAEGER
OTEL --> ELK
OTEL --> AI
PROM --> GRAFANA
AI --> LAW
LAW --> ALERTS
style OTEL fill:#ffeb3b
style SDK fill:#c8e6c9
style AI fill:#e3f2fd
style GRAFANA fill:#fff3e0
Telemetry Data Flow
sequenceDiagram
participant App as .NET Application
participant OTEL as OpenTelemetry SDK
participant Collector as OTEL Collector
participant Metrics as Metrics Store
participant Traces as Trace Store
participant Logs as Log Store
participant Dashboard as Monitoring Dashboard
App->>OTEL: Business Events
App->>OTEL: Performance Metrics
App->>OTEL: Distributed Traces
App->>OTEL: Application Logs
OTEL->>Collector: Batched Telemetry
Collector->>Metrics: Prometheus Metrics
Collector->>Traces: Jaeger Spans
Collector->>Logs: Structured Logs
Dashboard->>Metrics: Query Metrics
Dashboard->>Traces: Query Traces
Dashboard->>Logs: Query Logs
Note over Dashboard: Unified Observability View
1
2
3
4
5
6
7
8
9
10
11
12
// OpenTelemetry Configuration
services.AddOpenTelemetry()
.WithTracing(builder =>
{
builder.AddSource("Polly");
builder.AddAspNetCoreInstrumentation();
})
.WithMetrics(builder =>
{
builder.AddMeter("Polly");
builder.AddMeter("Microsoft.Extensions.Http.Resilience");
});
Adopt gradual migration strategies
When modernizing existing systems, use the Strangler Fig Pattern to gradually replace components while maintaining operational continuity. Start with low-risk components and expand systematically.
Ensure team readiness
Advanced patterns require skilled teams. Invest in training for Domain-Driven Design, microservices principles, and cloud-native development practices before implementing complex patterns.
Conclusion
This visual guide transforms complex architectural decisions into clear, actionable workflows. The modern .NET ecosystem offers unprecedented capabilities for building scalable, resilient applications, and the visual decision trees and flow diagrams in this guide help architects navigate the complexity of pattern selection.
Key Takeaways
mindmap
root((Architecture Success))
Start Simple
Layered for MVPs
Iterative Enhancement
Team Learning
Think Visual
Diagram First
Document Flows
Share Understanding
Plan Evolution
Migration Paths
Pattern Combinations
Scalability Roadmap
Monitor Continuously
Pattern Effectiveness
Performance Impact
Team Productivity
Decision Framework Summary
Follow these visual workflows for architectural success:
- Assessment Phase: Use the pattern selection decision tree to identify suitable patterns
- Design Phase: Apply architecture flow diagrams to structure your solution
- Implementation Phase: Reference minimal code contracts and interfaces
- Evolution Phase: Leverage pattern relationship maps for strategic enhancement
The Visual Advantage
Diagrams over code samples provide lasting value because they:
- Focus on architectural concepts rather than implementation details
- Remain relevant as technology evolves
- Enable better communication across teams
- Support faster decision-making processes
- Facilitate pattern combination strategies
Success in modern .NET architecture depends on visual thinking, systematic pattern selection, and evolutionary design approaches. Use the decision trees and workflow diagrams in this guide to build applications that are not only functional today but adaptable for tomorrow’s requirements.